Agriculture Science & Technology RESEARCH CAPABILITY

Updated November 2020
UQ RESEARCH PARTNERSHIPS

Inside ...

UQ’s unique record and capability in agriculture science & Technology ... 3
Gatton Campus .. 5
UQ School of Agriculture & food sciences .. 6
Queensland alliance for Agriculture & Food Innovation ... 6
Digital agriculture .. 7
Crop forecasting .. 8
Genomics and genetics .. 9
Digital technologies .. 10
Protected cropping and controlled environments .. 12
Automation and robotics ... 12
Space age plant breeding ... 13
Sugar set for ‘energycane’ reinvention ... 14
Remote sensing – key to modern environmental management .. 15
Drought fodder crop takes centre stage ... 16
Super clones to conquer coconut crisis .. 16
Research to improve management of agricultural pests and diseases in the pacific .. 17
Against the grain: soil constraints holding back Australian wheat ... 18
Research groups and centres .. 19
Integrative legume research group .. 19
China agricultural economics group ... 19
Centre for Crop Science ... 20
Centre for Horticultural Science ... 21
Maximising the economic benefits of agriculture .. 22
Using population genetics and genomics to better understand insect pests and weeds 23
UQ School of Agriculture & Food Science — academic staff ... 24
Queensland Alliance for Agriculture & Food Innovation — academic staff ... 25
Outstanding record of publication .. 26

Deputy Vice-Chancellor (Research and Innovation)
Research Partnerships
Email: pvcrp@research.uq.edu.au
Phone: +61 7 3365 3559
UQ’S UNIQUE RECORD AND CAPABILITY IN AGRICULTURE SCIENCE & TECHNOLOGY

World-class expertise and facilities

UQ enjoys an established international reputation for research excellence, and ranks consistently among the world’s top universities within the broad fields of agriculture and life sciences.

In fact UQ — which was ranked as the top agricultural research institution in Australia (NTU rankings 2017) — leads the world in tropical agriculture research. We’re also consistently in the top-five agriculture research institutions globally, and Australia’s most diversified agriculture research group.

Our ready access to cutting-edge investigative resources across UQ’s wider research community offers partner organisations many unique benefits.

UQ has world-leading researchers in fields such as crop and pasture production, food science, soil sciences, plant biology and genetics, horticultural production, environmental science, as well as animal, equine and wildlife sciences. During the period 2017–2019, UQ attracted more than $111 million in competitive research funding for Agriculture science related projects.

By collaborating with our UQ colleagues and beyond, and by interfacing with industry and government, we rapidly translate research into improvements in the field.

Our recent rankings milestones reflect the diversity, commitment and collaborative nature of our staff.

Our researchers come from all over the world, and are engaged in international interactions in countries as diverse as Indonesia, the USA, China, Brazil, India and Germany.

We maintain strong links with rural communities, industry and government, both locally and abroad. Together with our partners we work to find sustainable solutions for feeding the world, and to identify commercialisation opportunities.
UQ Agriculture Science & Technology Capability

- Genomics and genetics
- Food science and technology
- Next-Gen Fertilisers
- Sensors and automation
- Agribusiness
- Agriculture science regulation
- Rural development
- Agriculture trade policy
- Supply chains & markets
- Product commercialisation
- Food waste
- Environmental science
- Statistical modelling
- Environmental management
- Mapping
- Remote sensing
- Data management systems
- Crop Science
 - Horticultural Science
 - Crop modelling and forecasting
 - Protected cropping and controlled environments
 - Plant and soil sciences research
- Agriculture & Food Sciences
 - Animal, equine and wildlife sciences
 - Bioengineering & Nanotechnology
 - Chemical Engineering
- China Agricultural Economics Group
 - Integrative legume research group
 - Extensive network of existing national & international research partners
- Crop Science
 - Crop modelling and forecasting
 - Protected cropping and controlled environments
 - Plant and soil sciences research
- Environmental science
 - Statistical modelling
 - Environmental management
 - Mapping
 - Remote sensing
 - Data management systems
- Environmental science
 - Statistical modelling
 - Environmental management
 - Mapping
 - Remote sensing
 - Data management systems
- Crop Science
 - Crop modelling and forecasting
 - Protected cropping and controlled environments
 - Plant and soil sciences research
- Environmental science
 - Statistical modelling
 - Environmental management
 - Mapping
 - Remote sensing
 - Data management systems
- Crop Science
 - Crop modelling and forecasting
 - Protected cropping and controlled environments
 - Plant and soil sciences research
- Environmental science
 - Statistical modelling
 - Environmental management
 - Mapping
 - Remote sensing
 - Data management systems
The University of Queensland Gatton Farms is located on its Gatton Campus, 80 km west of Brisbane. The farms cover **1068 hectares** and include a dairy, piggery, sheep and goat herd, horticultural fields, post-harvest facilities and greenhouses, and an extensive range of plant and farm machinery.

Gatton Farms is spread across two locations. The main area of activities is on the Gatton Campus with another farm, **Darbalara**, located 10 km from the main campus. Darbalara’s 184 hectares is home to the School of Veterinary Science Droughtmaster herd and beef cattle teaching facility, along with other grazing and crop production.

The Gatton campus is located in the Lockyer Valley which is a highly fertile horticulture area with a subtropical climate that features relatively long hot summers, and short, mild winters with occasional frosts. Rainfall is summer dominant with 65-70% of the total rainfall occurring in October–March. The average annual rainfall to the area is about 780 mm, making this the driest part of south-east Queensland.

Queensland Animal Science Precinct

The Queensland Animal Science Precinct (QASP) provides a biosecure research environment with experienced and qualified staff to deliver high-quality support for all phases of research projects.

QASP can undertake a diverse range of animal research including nutrition, health and disease management, vaccine development, behavioural and welfare studies, biosecurity investigational work, reproduction and food safety.

Animal industries contribute more than of $4 billion to the Queensland economy annually in gross production value and are underpinned by an investment in people, infrastructure and resources of some $25 billion. Animal industries provide major employment in rural and regional Queensland.

Specialised veterinary services

Services include small animal, production animal and equine services at Gatton Campus and the Dayboro Clinic, genetic and laboratory testing, and an adoption program for cats and dogs.

Other Gatton Campus resources also include:

- Native Wildlife Teaching and Research Facility
- Centre for Animal Welfare and Ethics
- Centre for Spray Technology Application Research and Training
- Poultry Science Unit
- Research Nursery
UQ'S world-leading research addresses complex international concerns about food security and sustainable agricultural production.

Our primary focus lies in balancing how to feed a growing world population against rising affluence in developing countries, diminishing natural resources, and the need to improve productivity - while minimising environmental insult.

Our unique geographical location, multidisciplinary and collaborative nature, and stellar track record of innovation and research translation make us global leaders in tropical and subtropical agricultural systems research.

Research clusters

Our research is focused within four broad areas, although our individual researchers’ expertise and methodologies cross these boundaries.

- Agribusiness and rural development
- Animal, equine and wildlife sciences
- Food science and technology
- Plant and soil sciences

QUEENSLAND ALLIANCE FOR AGRICULTURE & FOOD INNOVATION

A UQ research institute, the Queensland Alliance for Agriculture and Food Innovation (QAAFI) is one of the world’s leading providers of research in tropical and sub-tropical agriculture and food production. QAAFI works across areas such as crops, horticulture, animals, and nutrition and food sciences, supported by its established links with industry and the Queensland Government.

QAAFI is comprised of four inter-related research centres, with a focus on the challenges facing tropical and sub-tropical food and agribusiness sectors in the tropical and subtropical systems.

Our vision is sustainable agriculture and food achieved through science and innovation.

- Centre for Crop Science
- Centre for Animal Science
- Centre for Nutrition and Food Sciences
- Centre for Horticultural Science

Contact

School of Agriculture and Food Sciences
safs@enquire.uq.edu.au

Queensland Alliance for Agriculture and Food Innovation
qaafi@uq.edu.au

Left: Viridiana Silva-Pere and Alex Wu

Photo: QAAFI

Right: QAAFI Centre for Nutrition and Food Sciences
Principal Research Fellow A/Prof. Yasmina Sultanbawa

Photo: QAAFI
Digital Agriculture

The digital revolution continues to transform agriculture, in the way it has transformed other key industries, such as telecommunications, banking and mining.

Our digital agriculture capabilities include:

- Crop modelling and forecasting
- Crop forecasting
- Genomics and genetics
- Sensors and automation
- Supply chains and markets
- Protected cropping and controlled environments

Digital agriculture makes use of integrated and connected computerised tools and information, to improve decision-making and productivity across all stages of food production — from genetics to farm management, transport and to the consumer.

Agriculture is yet to experience the full effect of digital technology but leads the way in some of the frontier digital sciences, such as linking remote sensing and predictive systems with genetics and genomics.

UQ’s Queensland Alliance for Agriculture and Food Innovation (QAAFI) offers world-leading capabilities in digital agriculture. At QAAFI, our integrated research teams across cereal and legume crops, horticulture, animal, and food and nutrition sciences, are world-leaders in cutting edge digital technologies.

Crop modelling and decision support

QAAFI conducts world-leading research, targeting enhanced profitability and sustainability of cereal and legume cropping systems in tropical and sub-tropical environments. Digital agriculture technologies allow us to integrate our research capabilities across molecular, whole plant, and production-level systems with our frontier research in climate modelling, prediction agriculture, genetics and farming systems to provide informed decision-support tools.

Sorghum research heats up

In a changing climate, farmers are already finding that extreme heat events are having a negative impact on the productivity of sorghum crops. Combining genomics, phenomics and modelling, QAAFI researchers are developing more temperature-tolerant varieties of this staple crop.

Computer ‘brain’ trawls vast datasets for crop advances

New breeding systems predict the likely paddock performance of breeding material based on a marriage of biological data, climate records and machine-based crop improvement.

Professor Mark Cooper is leading the way as the Chair in Prediction Based Crop Improvement — a role which aims to find innovative solutions to the world’s food-gap issue.

Artificial intelligence helps make the world more food secure

A new QAAFI-developed crop simulation software can be fed early-stage photosynthesis discoveries that are being made at the molecular (or subcellular) scale — and extrapolate how this altered photosynthesis biochemistry might impact on crop performance in the form of virtual plants grown under realistic farming conditions affected by real-world weather, soil and rainfall data.

Small trees horticultural initiative: modelling biology

The Small-Trees High-Productivity project seeks to improve mango, avocado and macadamia harvests through a better understanding of tree vigour, developmental architecture, crop load, and canopy light relations. Outcomes of experiments in these areas are integrated through functional-structural plant modelling, enabling insights into design of the new orchard systems, which are the ultimate target of the project.
Crop forecasting
QAAFI integrates satellite data, field experimentation, modelling tools, and socioeconomic data, to generate new science that supports decision-making for economic, environmental, and social outcomes to design farming systems better able to deal with production, climate and market risks.

QAAFI is working with the Beijing-based Institute of Remote Sensing and Digital Earth (RADI) to develop crop yield prediction systems using satellite data and biophysical crop modelling systems. The project will help producers and industry cope with weather extremes and climate change.

Predicting optimum crop designs using crop models and seasonal climate forecasts
Bridging productivity gaps by identifying optimum combination genetics and agronomic managements (i.e. crop designs) for the prevailing and expected growing environment — testing skilful seasonal climate forecasting systems.

Seasonal sorghum and wheat forecasts
QAAFI produces regular seasonal outlooks for sorghum and wheat producers in Queensland. OZ-Wheat regional wheat yield forecasts are developed from climate data and modelling, remote sensing and historical data showing likely yield outcomes. They cover Queensland and northern New South Wales. sorghum crop outlooks cover Queensland and northern New South Wales and are based on cropping after winter fallow, sorghum modelling, actual climate data, up to the forecasting date and projected climate data.
Genomics and genetics
QAAFI is home to several of the world’s most highly recognised scientists working in genetics, genomics and genomic prediction across plant and animal agriculture.

In crops, our integrated pre-breeding research programs deliver improved lines to industry based on advanced genetics, phenotyping, bioinformatics, trait physiology and modelling. In animals, we have major programs and capability in genetics and genomics; and the breeding and reproductive capability of northern Australian cattle breeds.

Developing a DNA test to predict the value of an animal’s genetics for fertility
The dream of running a heifer up a crush somewhere in the Gulf country, pulling out some tail hair and within minutes, getting an accurate prediction on her fertility, is one that could soon be realised.

Sugarcane genomics — a game-changer
Sugarcane is world leading industrial crop, important to Queensland and Australia. It is a highly efficient biomass crop and produces higher value products. QAAFI researchers, working with Sugar Research Australia, to sequence the sugarcane genome.

Sugarcane is the last of the global crops to have its genome sequenced, and it is the most complex genome of crop plants.

High folate strawberry in the lab © QAAFI

Scientists have discovered an ‘alpha strawberry’ that is very sweet in flavour and has folate levels that may be up to three times higher than standard strawberries.

Ancient rice genetics a boon for modern production
Wild Australian rice genes could make commercial rice production better suited to northern Australian conditions. The wild rices could contribute resistance to diseases such as rice blast, brown spot and bacterial leaf spots.

Could AI deliver the next wheat breakthrough?
Recent advances in ‘evolutionary computing’ — a branch of artificial intelligence (AI) — are being tapped into in an effort to speed up genetic gain in wheat breeding programs. AI platform FastStack is being designed to track the flow of valuable genes in breeding programs and detect those combinations most likely to improve crop performance.

Breeding Program Analysis Tool
QAAFI and UQ are working with the Bill & Melinda Gates Foundation to evaluate and improve breeding programs in developing countries. The project aims to identify ways of improving breeding programs, leading to greater genetic gains and on-farm profitability.

Sustainable intensification of Australia’s horticultural industry
The Horticultural Tree Genomics project will provide the genetic knowledge required for advanced breeding programs and future intensification of five important Australian horticultural tree crops — avocado, mango, macadamia, citrus and almond.
Sensors and automation

Digital technologies such as the use of satellite linked geo-positioning systems and sensors mounted on UAVs and fit-for-purpose ground rigs enable remote estimation of plant vigour and growth traits. This accelerates selection of adapted lines in large breeding trials and helps in making agronomic decisions on field management tailored to in-field variation. Across the plant, livestock and horticulture sectors, digital technologies are helping to tailor decisions and improve productivity across the supply chain.

An all-seeing mobile platform bristling with lenses and sensors can drive over trial plots during different growth stages and compile a composite ‘picture’ from the visible to the infrared light spectrums, from thermal and chemical imaging, and laser reflectance (or Lidar as it is known) for high-definition 3D profiles of the plant canopy.

Drought adaptation: automated lysimeter platforms

Each lysimeter is located on a load cell and lysimeter weights are recorded every 10 minutes. The re-watering of each lysimeter is fully automated and linked to breeding and phenotyping programs.

This Internet of Things digital technology has been trialled on maize, sorghum and wheat to develop fully automated watering systems and to identify water usage and transpiration rates.

Across the plant, livestock and horticulture sectors, digital technologies are helping to tailor decisions and improve productivity across the supply chain.
Supply chain and markets
AUSTRALIA enjoys an enviable and deserved reputation as the producer of safe, clean, green foods and agricultural products.

Protecting this supply chain is of paramount importance to the value of our agricultural produce and food supply.

New digital technologies such as blockchain and distributed ledger enable coordination and transparency across supply chains, supporting provenance and value adding.

It should also be noted that blockchain is also being used by major players in value chains to maintain and increase their bargaining power over the chain.

Associate Professor Damian Hine is leading a project on building farm financial models, supported by the rapid uptake of accounting systems such as Xero and MYOB.

The project is designed to enhance the evidence base for better decision making at several levels.

Opportunities for horticultural industries in northern Australia
Working with the CRC for Northern Australia, Associate Professor Damian Hine, QAAFI’s Professor Robert Henry and Professor Neena Mitter head a project to evaluate the potential to expand horticultural industries such as mangoes, lychees and avocados in northern Australia.

Blockchain, genomics and cryptocurrency
Could cryptocurrencies let you control & sell access to your DNA data? Blockchain is the technology that underpins digital currencies. It works as a digital ledger and provides accountability and transparency.

Australian native food
With a developing global interest from consumers wanting to know where their food comes from and a growing, newly-affluent population in many Asian and other export markets, there is an opportunity for Australia to build on its reputation as a producer of quality foods to develop added-value products. QAAFI has major research themes and projects in this space.
Protected cropping and controlled environments

Automation and robotics are revolutionising the growth of crops in protected and controlled environments. Such environments range from netting and plastic coverings of crops, to climate-controlled structures with computerised ventilation systems, advanced computer-controlled heating and cooling systems and nutrition enrichment technologies which are now driving the growth of urban and vertical farms. Controlled environments provide optimal growing conditions while reducing and, in some conditions, almost eliminating the need for chemical inputs to manage pests and diseases.

Digital horticulture

QAAFI’s Professor Neena Mitter, Director of the Centre for Horticultural Sciences says protected cropping promises big things for both western and developing nations in terms of production and nutrition. Read more

By using speed breeding techniques in specially modified glasshouses we can grow six generations of wheat, chickpea and barley plants, and four generations of canola plants in a single year.

Space age plant breeding lights the way for future crops

By using speed breeding techniques in specially modified glasshouses we can grow six generations of wheat, chickpea and barley plants, and four generations of canola plants in a single year - as opposed to two or three generations in a regular glasshouse, or a single generation in the field.
NASA experiments to grow wheat in space were the inspiration for UQ scientists to develop the world’s first ‘speed breeding’ procedures here on planet Earth.

UQ Queensland Alliance for Agriculture and Food Innovation (QAAFI) Senior Research Fellow Dr Lee Hickey said the NASA experiments involved using continuous light on wheat which triggered early reproduction in the plants.

“We thought we could use the NASA idea to grow plants quickly back on Earth, and in turn, accelerate the genetic gain in our plant breeding programs,” Dr Hickey said.

He was part of the team from the UQ School of Agriculture that began trialling speed-breeding techniques to cut the length of plant breeding cycles more than 10 years ago.

“By using speed-breeding techniques in specially modified glasshouses we can grow six generations of wheat, chickpea and barley plants, and four generations of canola plants in a single year — as opposed to two or three generations in a regular glasshouse, or a single generation in the field,” Dr Hickey said.

“Our experiments showed that the quality and yield of the plants grown under controlled climate and extended daylight conditions was as good, or sometimes better, than those grown in regular glasshouses.”

He said information on how to use speed breeding was increasingly in demand from other researchers and industry.

“There has been a lot of interest globally in this technique due to the fact that the world has to produce 60–80 per cent more food by 2050 to feed its nine billion people.”

The speed-breeding technique has largely been used for research purposes but is now being adopted by industry.

UQ scientists, in partnership with Dow AgroSciences, have used the technique to develop the new ‘DS Faraday’ wheat variety.

“DS Faraday is a high protein, milling wheat with tolerance to pre-harvest sprouting,” Dr Hickey said.

“We introduced genes for grain dormancy so it can better handle wet weather at harvest time — which has been a problem wheat scientists in Australia have been trying to solve for 40 years,” he said.

“We’ve finally had a breakthrough in grain dormancy, and speed breeding really helped us to do it.”

Dr Hickey said the level of interest in speed breeding led to his collaborators at the John Innes Centre and the University of Sydney to write a *Nature Plants* paper, which outlines all the protocols involved in establishing speed breeding systems and adaptation of regular glasshouse facilities.

UQ PhD student Amy Watson was a co-first author of the paper and conducted some of the key experiments that documented the rapid plant growth and flexibility of the system for multiple crop species.

Dr Hickey believes the sky is the limit for the new technology and he is now investigating the integration of speed breeding with other modern crop breeding technologies.

“It could also have some great applications in future vertical farming systems, and some horticultural crops,” Dr Hickey said.

Speed breeding is a powerful tool to accelerate crop research and breeding is available at Nature Plants. (doi: 10.1038/s41477-017-0083-8)
Sugar set for ‘energycane’ reinvention

GENE-editing sugarcane for use in renewable energy and bioplastics could help secure the industry’s future.

The University of Queensland’s Professor Robert Henry said sugarcane’s reinvention as an “energycane” crop could sustain the industry in the face of falling global demand for sugar.

“The industry must think beyond just producing sugar, to also producing electricity, biofuels for transportation and oils to replace traditional plastics,” he said.

Professor Henry, Director of the Queensland Alliance for Agriculture and Food Innovation (QAAFI) at UQ, is conducting the first gene-editing experiments to tailor sugarcane production to effectively produce biofuels and bioplastics.

“It’s about reinventing sugarcane as a crop with a wider range of end uses, and sugarcane is ideal for renewables because it is fast-growing with abundant biomass,” he said.

He is working with a global team to sequence the sugarcane genome as part of a US Joint Genome Institute project.

“Sugar is the last major cultivated plant to have its genome sequenced, and we expect to see it fully decoded by 2020,” Professor Henry said.

“Having sugar’s genetic template will allow us to look at growing sugarcane as a biofuel and a source of 100 per cent recyclable bioplastic, making it a substitute for petroleum in the production of countless items from cosmetics to car parts,” he said.

Professor Henry’s call to rethink sugarcane is supported by Cooperative Research Centre for Developing Northern Australia Chair Ms Sheriden Morris.

Sugarcane at Meringa research station“Gene-editing of the sugarcane genome will allow the sugar industry to explore adaptations that will reduce environmental impacts, especially on the Great Barrier Reef,” Ms Morris said.

“It will help the industry to broaden the potential of a sugar crop to a wider range of uses. Biofuels and bioplastics will be important to the long-term future of the industry,” she said.

Professor Henry, who has helped lead genomic breakthroughs in decoding the sugarcane genome, said the science was quickly developing to allow growers to tap into the commercial opportunities in renewables.

“Economics is the key. Now that we understand more about the genetics of sugarcane, these sorts of products are becoming commercially realistic.”

Contact
Professor Robert Henry
robert.henry@uq.edu.au
Remote sensing – key to modern environmental management

The remote sensing teams’ skills are in high demand across state and federal agencies, helping them to measure the effectiveness of environmental management policy decisions.

REMOTE sensing has evolved to become the tool-of-choice for environmental organisations around the world. UQ researchers Professor Stuart Phinn, Dr Chris Roelfsema and Dr Peter Scarth lead a cross-disciplinary team of scientists who specialise in measuring and monitoring environmental changes using earth observation data.

Their teams’ skills are in high demand across local, state and federal agencies, private industry and NGOs helping them to measure the effectiveness of environmental management decisions.

By being at the forefront of the scientific methods used to measure and monitor environmental changes, the Joint Remote Sensing Research Program assists Australian government agencies in keeping pace with rapid changes in remote sensing technology.

Their methods and research to operational program underpins the use of satellite data in legislated mapping and monitoring programs in multiple states and territories, as well as leading national development and coordination of earth observation through Earth Observation Australia.

As professor of Geography at UQ, Stuart Phinn teaches remote sensing and directs the Remote Sensing Research Centre, which includes programs to support government agencies across Australia (Joint Remote Sensing Research Program) and enabling coordination across all government, industry and research groups collecting and using EO data (Earth Observation Australia).

The majority of Dr Scarth’s work uses images collected from satellite and aircraft, in combination with field measurements, to map and monitor the Earth’s environments and how they are changing over time. This work is done in collaboration with other environmental scientists, government environmental management agencies, NGO’s and private companies.

Contact
Professor Stuart Phinn
s.phinn@uq.edu.au

Great Barrier Reef geomorphic – one of the many observational data tools used to measure and monitor environmental changes.
A FAST-GROWING legume could become a viable feed option for drought-affected cattle farmers in Australia’s north.

Associate Professor Max Shelton, from UQ’s School of Agriculture and Food Sciences, said leucaena legume (Leucaena leucocephala) offers a profitable and environmentally-sustainable option for cattle producers in dry, tropical regions.

“Leucaena addresses the main problem with achieving high quality range-fed beef in the tropics — it supplies high-quality protein when cattle need it most, in the dry season, or during a drought such as we’re having now,” he said.

“There are substantial establishment costs, but it’s a profitable long-term investment with few risks, so in trying times like this, it’s an amazing fodder crop.”

Leucaena has been widely adopted in northern Australia and other tropical countries in the past 20 years, and has been the subject of considerable research.

This long-term data has helped address environmental concerns about the widespread use of the legume in farming.

“Many environmentalists view the legume as a potential weed threat, as there’s already a lot of weed leucaena along coastal Queensland,” Dr Shelton said.

“The evidence shows that it didn’t come from graziers’ paddocks.”

“In fact, there are environmental benefits, as leucaena is very effective at reducing methane emissions and sequestering carbon.”

“That’s just another reason why planting leucaena is the most productive, profitable and sustainable long-term strategy for pasture improvement for the northern Australian beef industry.”

Drought fodder crop takes centre stage

AGEING coconut palm trees could be replaced quickly and cheaply by superior cloned coconuts being developed by University of Queensland researchers.

PhD student Eveline Kong, from the Cocobio Laboratory at UQ’s School Of Agriculture and Food Sciences, said the project would help avoid a coconut shortage caused by old coconut palms becoming less productive each year.

“Hype for coconut products used as dairy alternatives, for coconut oil or snacks is driving exponential growth in the market,” Ms Kong said.

“However, the industry faces a looming shortage as most trees were planted 70 or more years ago and every year these older plants produce fewer and fewer coconuts.”

She said rough estimates suggested that nearly a billion new trees need to be planted to meet rising demand.

“The problem is that conventional breeding – from seed – takes a long time and it’s hard to breed palms with specific characteristics.

“So to keep up with market demands we’re developing coconut cloning, propagation and conservation techniques that are fast, economical and let us select desired traits.

“It should only take three years to turn a baby palm — a plantlet — into a fruit bearing tree, a dramatic improvement on traditional breeding methods that can take many years.”

The team plans to clone coconut plantlets from ‘mother’ plants that are high yield, disease resistant and drought tolerant.

“We’re not only aiding productivity, but also creating a more resilient, more nutritious coconut,” Ms Kong said.

“We do this by taking a small piece of tissue from the mother plant and then growing it in culture, helping achieve high rates of coconut cell multiplication.

“Once the cells form into embryos, they’re transferred to a platform containing nutrients and growth hormones this stimulates roots, stem and leaf production.

“From there it’s a matter of planting, and then, voilà.

“These advances will bring great benefits to Australian farmers, as well as farmers from Pacific nations like Fiji, Samoa, Papua New Guinea, Vanuatu and Kiribati — so our research is truly protecting livelihoods around the globe.”

Super clones to conquer coconut crisis

Contacts

Eveline Kong
e.kong@uq.edu.au

Associate Professor Max Shelton
m.shelton@uq.edu.au
Research to improve management of agricultural pests and diseases in the Pacific

UNIVERSITY of Queensland researchers will develop a program to help improve the livelihoods of farmers in the Pacific islands by tackling problems caused by pests and crop diseases. The program is the keystone of a five year project funded by a $4.4 million grant from The Australian Centre for International Agricultural Research.

Dr Michael Furlong, an applied entomologist from UQ’s School of Biological Sciences, said developing sustainable solutions for farmers was vital.

“The project will work with Pacific island governments to promote biological control of insect pests as part of an overall approach to sustainable agriculture,” he said.

“The production of high-value fruit and vegetable crops free from unsafe agrochemicals is a priority in many Pacific island countries.

“These chemicals can be expensive and often have adverse effects on the environment and human health.

“This grant gives us a real opportunity to help improve the livelihoods of farming families and their communities by significantly improving the ways in which crop pests and diseases are managed over the longer term.”

The researchers will develop a regional ‘Plant Health Clinic’ program, which will train ministry and NGO extension staff to run clinics where farmers can have crop problems diagnosed and get advice on how to manage pests and diseases.

“This will increase the capacity of national ministries and help poor farmers deal with difficult production issues at a time when food security presents a serious problem,” Dr Furlong said.

UQ will partner on the project with regional organisation, Pacific Community, the agriculture ministries of Fiji, Samoa, Solomon Islands and Tonga and the National Agricultural Research Institute in Papua New Guinea.

“Contact

Dr Michael Furlong
m.furlong@uq.edu.au

“The project will work with Pacific island governments to promote biological control of insect pests as part of an overall approach to sustainable agriculture.”

— Dr Michael Furlong

Photo: Michael Furlong

A spider eats a pest insect in a crop that has not been sprayed with synthetic pesticide. These predators are also important biological control agents of pests.
A model developed by researchers at The University of Queensland could address soil problems that cost Australia’s wheat producers almost $2 billion a year.

Dr Yash Dang, from UQ’s School of Agriculture and Food Sciences, said the model measured the economic impact of soil problems and could help guide investment decisions on remediation and minimise productivity losses.

“Soil sodicity (too much sodium in the soil), salinity, acidity and alkalinity and compaction significantly affect grain production in Australia,” he said.

“Each soil constraint has a different cause – with different treatment options – meaning that the management of each issue has different economic costs and opportunities.”

The project used data from sources, including yield data based on previous work by CSIRO, ABS and analysis of remote sensing imagery, soil data from the National Soil Site Collation and climate data from the Scientific Information for Land Owners database.

Dr Thilak Mallawaarachchi, from UQ’s School of Economics, said the team managed to isolate the real costs of some of the country’s worst soil issues for wheat production.

“The results underlined the large impact of soil sodicity, affecting 68 per cent of Australia’s wheat-cropping land and costing farmers $1.15 billion annually,” he said.

“On top of that, we estimate that $380 million of our wheat crops are lost per year from soil acidity.

“We know how to address these issues – through traditional treatments like the application of gypsum and lime respectively – so we can use this data to find the best way to make remediation investments.”

In a follow-up project, the team is looking to provide fine-scale information for landholders.

“We’re building a software tool that can collate and summarise the relevant remote-sensing and soil data in a form that would be useful for individual farmers,” Dr Dang said.

“The software tool, along with a soil kit, will help them identify consistently high or low-yielding areas of paddocks, and diagnose potential soil constraints that might be causing any production losses in their paddocks.

“We’re hoping this work not only contributes towards ensuring greater profits for farmers, but also to better global food security.”

The research was published in *Land Degradation and Development* (DOI: 10.1002/ldr.3130).

Funding for this project was provided by the Grains Research and Development Corporation.

Contacts

Dr Yash Dang
y.dang@uq.edu.au,

Dr Thilak Mallawaarachchi
t.mallawaarachchi@uq.edu.au
Research groups and centres

Integrative Legume Research Group
The Integrative Legume Research Group is an internationally renowned research network of plant scientists conducting cutting-edge research into legumes and other plant species. Head-quartered at UQ, it has research affiliates in leading Australian and overseas laboratories.

We selected legumes (17,000 species are known – ranging from herbaceous, weeds, grain crops to large forest trees) as a focus because of their wide role in human and environmental well-being, their special ability to enter a nitrogen-fixing symbiosis with soil bacteria, and their broad scientific database in phytochemistry, genetics, genomics and physiology.

Our scientists aim to understand how plant cells communicate, grow and differentiate to attain specific physiological functions. Cutting-edge research into plant physiology, genetics, molecular and cell biology is providing fundamental insights into developing enhanced food production, agricultural sustainability, environmental quality and products for human health.

The original centre was established in 2003 with a grant from the Australian Research Council (ARC), combining researchers at the Australian National University, the University of Melbourne and the University of Newcastle. Substantial advances were attained. By the end of 2010, ARC central funding ceased, but ARC permitted the continuation of the centre within the Queensland node. Current funding is from competitive grants, UQ support and industrial partnerships as well as donations.

Population genomics of migration dynamics in brown planthopper
Brown planthopper is the most serious insect pest of rice – a key staple crop. Despite decades of research tracking this insect with traditional techniques the migration dynamics of this pest across China and southeast Asia have not been resolved. With his collaborators (insect ecologists) in China, Dr Hereward has been using whole-genome resequencing of natural populations of this pest to determine their migration dynamics. They have shown that southeast Asia is the main source of the annual migration into the temperate regions of China. Counter to previous studies – their genomics approach shows that the Philippines population is quite separate from the mainland populations and doesn’t contribute to the migration. This explains why the Philippines population has high levels of insecticide resistance but the mainland population doesn’t.

Herbicide resistance in agricultural weeds
Postdoctoral Research Fellow Dr James Hereward has sequenced the genomes (and gene expression) of two important agricultural weeds in Australia to understand how they have evolved resistance to the herbicide glyphosate, and then used population genetics to track how many times herbicide resistance has evolved and how it might spread through the agricultural landscape.

Using genetics to understand cryptic species of agricultural pests
Many of our serious agricultural pests look like one species, but when scientists investigate them using genetics they turn out to be more than one “cryptic species”. This has important implications for the way we manage these pests and also how we set biosecurity priorities. Recently, one thrips’ pest that Dr Hereward investigated turned out to have as many as seven cryptic species within it – three of which are present in Australia. This means that in Australia we have to approach this insect as three different pests – and that we also need to try to exclude the other four with biosecurity measures.

China Agricultural Economics Group
We’ve been involved in agricultural economics research in China since the mid-1980s. Our work focuses strongly on research into China’s ruminant livestock industries and its western and pastoral regions, and covers:

- Grassland management
- Integrated crop livestock systems in Tibet and Gansu
- Industry policy and marketing in the cattle and beef, wool and wool textile, sheepmeat, cashmere and dairy industries.

In recent years, we’ve extended our research into neighbouring Asian countries, including Mongolia.

Contacts

Integrative Legume Research Group
b.ferguson1@uq.edu.au

China Agricultural Economics Group
j.zhang10@uq.edu.au
The Centre for Crop Science within UQ’s Queensland Alliance for Agriculture and Food Innovation (QAAFI) conducts world-leading research targeting enhanced profitability and sustainability of cereal and legume cropping systems in tropical and sub-tropical environments. The centre pursues excellence in crop science at molecular, whole plant, and production system levels. QAAFI’s integrated research capabilities include crop genetics, physiology, and modelling, along with soil science and weed biology.

Crop improvement
Integrated pre-breeding research programs delivering advanced lines to industry based on advanced genetics, phenotyping, bioinformatics, trait physiology and modelling.
- Germplasm development with structured populations, advanced phenotyping, and speed breeding in sorghum, barley, and wheat
- Traits delivering adaptation to water limited environments and resistance to pests and diseases
- Strong industry and international links

Contact
Professor David Jordan
+61 7 4542 6722
david.jordan@uq.edu.au

Weed biology and management
Weed seed biology and weed ecology research targeting management of weed species
- Non-chemical and chemical control options to manage weeds in grain and cotton cropping systems
- Managing herbicide resistant – weeds
- Weed and seed physiology and biology

Contact
A/Professor Bhagirath Chauhan
+61 7 54601 541
b.chauhan@uq.edu.au

Soil nutrition and health
Field and controlled environment research to support the development of agronomic practices and crop rotations that maintain healthy soils and sustainable farming systems.
- Developing fertility management strategies to maintain productive capacity of cropping soils.
- Exploring impacts of root systems on acquisition of water and nutrients
- Developing strategies for effective use of grain legumes in farming systems

Contact
Professor Mike Bell
+61 7 54601 140
m.bell4@uq.edu.au

Grain crop physiology and modelling
Integrating crop science from the molecular to whole plant levels by linking experimentation with mathematical models of crop growth and development
- Exploring the physiology and genetics of complex adaptive traits in field crops with a focus on water productivity
- Aiding crop management and design for enhanced production in water-limited environments
- Evaluating the efficiency with which resources (radiation, water and nitrogen) are utilized by crop plants

Contact
Professor Andrew Borrell
+61 7 4542 6740
a.borrell@uq.edu.au

Farming systems
Integrating field experimentation, modelling tools, and socioeconomic data, to generate new science that supports decision-making for economic, environmental, and social outcomes
- Designing farming systems better able to deal with production, climate and market risks
- Working with farmers to reduce yield gaps, manage risks, and enhance resilience and sustainability of production systems

Contact
Professor Daniel Rodriguez
+61 7 54601 153
d.rodriguez@uq.edu.au
Horticulture crop breeding and agronomy
Improving the productivity and quality of horticultural crops through application of genetics and genomics in selection and breeding, integrated with orchard agronomy.

• Conservation and genetic improvement of horticultural crops
• Sub-tropical and tropical fruit tree crop breeding and improvement
• Rootstock evaluation and selection to improve productivity
• Improving orchard production systems

Contact
A/Professor Bruce Topp
b.topp@uq.edu.au
Maximising the economic benefits of agriculture

UQ is well endowed with researchers who work to boost the economic benefits of agriculture. The complexities of trade policy, commercialisation and financial modelling are but some of the many high-level challenges behind shifting agricultural products from farm to fork.

The pace, scale and complexity of global trade and finance have rapidly evolved over the past 60 years, placing enormous pressure on governments, policy-makers and industry. Similarly, the threats faced by countries and societies have changed dramatically in recent years with cyber attacks and threats to climate, energy and water security now a feature of contemporary policy debate.

- **Professor Brad Sherman** works across many aspects of intellectual property law, with a particular emphasis on its historical, doctrinal and conceptual development. He is also interested in the role of intellectual property in relation to food security.

- **Associate Professor Damian Hine** works on business model innovation for community businesses to make them more attractive to impact investors. His research interests are built on the impact of innovation and innovations for businesses, communities and industries. He has worked with fisheries, the pearl industry, horticulture and tourism across the Asia-Pacific region.

- **Dr Kiah Smith** is an early career sociologist in the fields of environment and development, with a focus on agrifood political and cultural economy. Her research focuses on understanding the transformation of local and global food systems in light of shifting social relations and global environmental change, and emphasises the social and political-economic factors underpinning the ways that food production, trade and consumption are understood and contested by multiple actors (farmers, women, supermarkets, policy makers, activists) at local, national and global levels.

- **Professor Karen Hussey** and her colleagues are assessing the major challenges that Australian and European negotiators face in tackling the agricultural trade barriers between the two trading partners. The work is informed by statistical analysis of the current trading relationship; interviews with key industry peak bodies and government departments; analysis of previous FTAs involving Australia and the EU; submissions to government enquiries; and the peer-reviewed academic literature.

Contact
UQ Centre for Policy Futures
policyfutures@uq.edu.au
+61 7 3443 3118
Using population genetics and genomics to better understand insect pests and weeds

UQ researchers are using population genetics and genomics to improve our understanding of insect pests and weeds (both agricultural and environmental).

One group is using population genetics to see how different populations are connected by movement, and to determine how many species might be present in an agricultural pest (many agricultural pests look like one species, but using genetics we often find that they are actually several species that look the same — this is important for control and biosecurity).

Genomics helps us to understand how insects and plants evolve resistance to chemical control measures.

Contact
James Hereward
j.hereward@uq.edu.au

Herbicide resistance in agricultural weeds

Postdoctoral Research Fellow Dr James Hereward has sequenced the genomes (and gene expression) of two important agricultural weeds in Australia to understand how they have evolved resistance to the herbicide glyphosate, and then used population genetics to track how many times herbicide resistance has evolved and how it might spread through the agricultural landscape.

Population genomics of migration dynamics in brown planthopper

Brown planthopper is the most serious insect pest of rice – a key staple crop. Despite decades of research tracking this insect with traditional techniques the migration dynamics of this pest across China and southeast Asia have not been resolved. With his collaborators (insect ecologists) in China, Dr Hereward has been using whole-genome resequencing of natural populations of this pest to determine their migration dynamics. They have shown that southeast Asia is the main source of the annual migration into the temperate regions of China. Counter to previous studies – their genomics approach shows that the Philippines population is quite separate from the mainland populations and doesn’t contribute to the migration. This explains why the Philippines population has high levels of insecticide resistance but the mainland population doesn’t.

Using genetics to understand cryptic species of agricultural pests.

Many of our serious agricultural pests look like one species, but when scientists investigate them using genetics they turn out to be more than one “cryptic species”. This has important implications for the way we manage these pests and also how we set biosecurity priorities. Recently, one thrips pest that Dr Hereward investigated turned out to have as many as seven cryptic species within it – three of which are present in Australia. This means that in Australia we have to approach this insect as three different pests – and that we also need to try to exclude the other four with biosecurity measures.
UQ School of **Agriculture & Food Science** — Academic staff

Head of School
Professor Neal Menzies
n.menzies@uq.edu.au

Deputy Head
Professor Victor Galea
v.galea@uq.edu.au

1. Professor Steve Adkins
2. Professor Elizabeth Aitken
3. Dr Jay Anderson
4. Dr Vivi Ariief
5. Dr Anoma Ariyawardana
6. Dr Ammar Abdul Aziz
7. Dr Nidhi Bansal
8. Dr Ben Barth
9. Professor Michael Bell
10. Professor Bill Bellotti
11. Professor Bhesh Bhandari
12. Mr Johannes Biala
13. Professor Jimmy Botella
14. Dr Alana Boulton
15. Dr Richard Brackin
16. Associate Professor Colin Brown
17. Professor Kim Bryceson
18. Professor Wayne Bryden
19. Professor Ram Dalal
20. Dr Bradley Campbell
21. Dr Shane Campbell
22. Dr Robyn Cave
23. Professor Scott Chapman
24. Dr Shi Wei Chen
25. Dr Marisa Collins
26. Dr Phillip Currey
27. Dr Yash Dang
28. Dr Mark Dieters
29. Dr Bill Ellis
30. Associate Professor Brett Ferguson
31. Professor Melissa Fitzgerald
32. Dr Sean FitzGibbon
33. Professor Shu Fukai
34. Professor Victor Galea
35. Associate Professor John Gaughan
36. Dr Hayley Giles
37. Professor Ian Godwin
38. Dr Karen Harper
39. Dr Richard Haynes
40. Dr Andrew Hewitt
41. Dr Van Ho
42. Dr Nick Hudson
43. Dr Natalie Jones
44. Associate Professor Steve Johnston
45. Professor Daryl Joyce
46. Dr Tamara Keeley
47. Dr Gunnar Kirchhof
48. Dr Jitka Kochanek
49. Dr Peter Kopittke
50. Dr Arun Kumar
51. Dr Christopher Lambrides
52. Dr Luke Leung
53. Dr Xiuhua Li
54. Dr Rebecca Lyons
55. Dr Cristina Martinez
56. Dr Sarah Meale
57. Professor Neal Menzies
58. Mrs Sandra Micallef
59. Dr Jaque Mitchell
60. Dr Agnieszka Mudge
61. Associate Professor Peter Murray
62. Dr Phuong Thi Mac Nguyen
63. Dr Oleg Nicetic
64. Dr Chris O’Donnell
65. Dr Tom Orton
66. Dr Nahuel Pachas
67. Dr Gomathy Palaniappan
68. Dr Melinda Perkins
69. Ms Valerie Powell
70. Dr Sangeeta Prakash
71. Dr Simon Quigley
72. Dr Nicole Robinson
73. Professor Helen Ross
74. Professor Peer Schenk
75. Professor Susanne Schmidt
76. Dr Vijaya Singh
77. Dr Dominic Smith
78. Dr Elham Assadi Soumeh
79. Dr Megan Sullivan
80. Ms Mingzhu Sun
81. Dr Mark Turner
82. Dr Severine van Bommel
83. Dr Frederik van der Born
84. Dr Byron Venn
85. Dr Francois Visser
86. Dr Scott Waldron
87. Dr Bernhard Wehr
88. Miss Kylie Wenham
89. Dr Alwyn Williams
90. Dr Lava Yadav
91. Dr Anthony Young
92. Dr Rebeka Zsoldos

General enquiries
Email: safs@enquire.uq.edu.au
Phone: +61 7 3365 1171
Fax: +61 7 3365 1177
Queensland Alliance for Agriculture & Food Innovation — Academic staff

Institute Director
Professor Robert Henry
robert.henry@uq.edu.au

Deputy Director
Strategy and Engagement
Stephen Williams
stephen.williams@uq.edu.au

Centre for Crop Science
1. Professor Ian Godwin
 Centre Director — Crop Science
 & Affiliated Professor
2. Professor David Jordan
3. Dr Lee Hickey
4. Dr Adrian Hathorn
5. Dr Andries Potgieter
6. Dr Yongfu Tao
7. Dr Robert Armstrong
8. Dr Emma Mace
9. Professor Andrew Borrell
10. Dr Karine Chenu
11. Dr Jack Christopher
12. Dr Barbara George-Jaeggli
13. Mr Sean Reynolds Massey-Reed
14. Dr Erik Van Oosterom
15. Dr Alex Wu
16. Professor Daniel Rodriguez
17. Dr Joe Eyre
18. Mr Peter deVoil
19. Dr Caspar Roxburgh
20. Professor Michael Bell
21. Associate Professor RCN Rachaputi
22. Associate Professor Bhagirath Chauhan
23. Associate Professor Sudheesh Manalil Velayudhan
24. Dr Gulshan Mahajan
25. Professor Graeme Hammer

Centre for Animal Science
26. Professor Ala Tabor
27. Dr Conny Turni
28. Dr Peter James
29. Associate Professor Patrick Blackall
30. Dr Gomathy Palaniappan
31. Dr Ali Raza
32. Dr Lida Omaleki
33. Dr Mona Moradi Vajargah
34. Professor Alan Tilbrook
35. Associate Professor Mary Fletcher
36. Dr Natasha Hungerford
37. Professor Ben Hayes
38. Dr Robert Dixon
39. Professor Stephen Moore
 Centre Director — Centre for Animal Science
40. Dr Geoffry Fordyce
41. Dr Luis Prada e Silva
42. Dr Gabi Netzel
43. Associate Professor Athol Klieve
44. Associate Professor Timothy Mahony

Centre for Horticultural Science
45. Associate Professor Jim Hanan
46. Dr Craig Hardner
47. Associate Professor Steven Underhill
48. Dr Yuchan Zhou
49. Dr Mobashwer Alam
50. Dr Inigo Auzmendi
51. Dr Liqi Han
52. Professor Andre Drenth
53. Associate Professor Elizabeth Dann
54. Associate Professor Ralf Dietzgen
55. Associate Professor Andrew Geering
56. Professor Neena Mitter
 Centre Director — Centre for Horticultural Science
57. Dr Alice Hayward
58. Dr Karl Robinson
59. Associate Professor Bruce Topp

General enquiries
Email: qaafi_admin@uq.edu.au
Phone: +61 7 3346 0550
Outstanding record of publication

Consistently ranked among Australia’s leading agriculture research institutions, UQ makes a strong and lasting contribution to published scientific literature in areas such as agriculture, land and farm management, animal production, crop and pasture production, fisheries sciences, forestry sciences, horticultural production, and veterinary sciences.

During the period 2017–2019, UQ researchers published more than 816 first-quartile papers in these disciplines (field of research code 07). Below we showcase 118 publications, all in the global top 5% of their subject area.*

<table>
<thead>
<tr>
<th>AUTHORS</th>
<th>YEAR</th>
<th>TITLE</th>
<th>PUBLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giakoumi, S., Pey, A.</td>
<td>2017</td>
<td>Assessing the effects of marine protected areas on biological invasions: A global review</td>
<td>Frontiers in Marine Science</td>
</tr>
<tr>
<td>Yang, F., Zhang, M., Bhandari, B., Liu, Y.</td>
<td>2018</td>
<td>Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters</td>
<td>LWT - Food Science and Technology</td>
</tr>
<tr>
<td>Venter, O., Magrach, A., Outram, N., Klein, C.J., Possingham, H.P., Di Marco, M., Watson, J.E.M.</td>
<td>2018</td>
<td>Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions</td>
<td>Conservation Biology</td>
</tr>
</tbody>
</table>

(*Categorised under FoR code 07 published in journals ranked according to CiteScore)
<table>
<thead>
<tr>
<th>AUTHORS</th>
<th>YEAR</th>
<th>TITLE</th>
<th>PUBLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salazar, G., Mills, M., Verissimo, D.</td>
<td>2018</td>
<td>Qualitative impact evaluation of a social marketing campaign for conservation</td>
<td>Conservation Biology</td>
</tr>
<tr>
<td>Dhital, S., Warren, F.J., Butterworth, P.J., Ellis, P.R., Gidley, M.J.</td>
<td>2017</td>
<td>Mechanisms of starch digestion by α-amylase—Structural basis for kinetic properties</td>
<td>Critical Reviews in Food Science and Nutrition</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Septevani, A.A., Evans, D.A.C., Annamalai, P.K., Martin, D.J.</td>
<td>2017</td>
<td>The use of cellulose nanocrystals to enhance the thermal insulation properties and sustainability of rigid polyurethane foam</td>
<td>Industrial Crops and Products</td>
</tr>
<tr>
<td>Padayachee, A., Day, L., Howell, K., Gidley, M.J.</td>
<td>2017</td>
<td>Complexity and health functionality of plant cell wall fibers from fruits and vegetables</td>
<td>Critical Reviews in Food Science and Nutrition</td>
</tr>
<tr>
<td>Ching, S.H., Bansai, N., Bhandari, B.</td>
<td>2017</td>
<td>Alginate gel particles—A review of production techniques and physical properties</td>
<td>Critical Reviews in Food Science and Nutrition</td>
</tr>
<tr>
<td>Hoegh-Guldberg, O., Poloczanska, E.S.</td>
<td>2017</td>
<td>Editorial: The effect of climate change across ocean regions</td>
<td>Frontiers in Marine Science</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Nouvian, M., Mandal, S., Jamme, C., Claudianos, C., D’Ettorre, P., Reinhard, J., Barron, A.B., Giurfa, M.</td>
<td>2018</td>
<td>Cooperative defence operates by social modulation of biogenic amine levels in the honey bee brain</td>
<td>Proceedings of the Royal Society B: Biological Sciences</td>
</tr>
<tr>
<td>Bertin, F.R., de Laat, M.A.</td>
<td>2017</td>
<td>The diagnosis of equine insulin dysregulation</td>
<td>Equine Veterinary Journal</td>
</tr>
<tr>
<td>Blackall, P.J., Soriano-Vargas, E.</td>
<td>2017</td>
<td>Infectious Coryza and Related Bacterial Infections</td>
<td>Diseases of Poultry: Thirteenth Edition</td>
</tr>
<tr>
<td>Hannapel, D.J., Sharma, P., Lin, T., Banerjee, A.K.</td>
<td>2017</td>
<td>The multiple signals that control tuber formation</td>
<td>Plant Physiology</td>
</tr>
<tr>
<td>Sejian, V., Kumar, D., Gaughan, J.B., Naqvi, S.M.K.</td>
<td>2017</td>
<td>Effect of multiple environmental stressors on the adaptive capability of Malpura rams based on physiological responses in a semi-arid tropical environment</td>
<td>Journal of Veterinary Behavior</td>
</tr>
<tr>
<td>Vaughan, D.B., Grutter, A.S., Costello, M.J., Hutson, K.S.</td>
<td>2017</td>
<td>Cleaner fishes and shrimp diversity and a re-evaluation of cleaning symbioses</td>
<td>Fish and Fisheries</td>
</tr>
<tr>
<td>Hoegh-Guldberg, O., Polooczanska, E.S., Skirving, W., Dove, S.</td>
<td>2017</td>
<td>Coral reef ecosystems under climate change and ocean acidification</td>
<td>Frontiers in Marine Science</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Allan, J.R., Venter, O., Maxwell, S., Bertzky, B., Jones, K., Shi, Y., Watson, J.E.M.</td>
<td>2017</td>
<td>Recent increases in human pressure and forest loss threaten many Natural World Heritage Sites</td>
<td>Biological Conservation</td>
</tr>
<tr>
<td>Gilligham, M., Chapman, S., Martin, L., Jose, S., Bastow, R.</td>
<td>2017</td>
<td>The case for evidence-based policy to support stress-resilient cropping systems</td>
<td>Food and Energy Security</td>
</tr>
<tr>
<td>Schmid, J., Lange, D., Sjöström, J., Brandon, D., Klippel, M., Frangi, A.</td>
<td>2018</td>
<td>The use of furnace tests to describe real fires of timber structures</td>
<td>WCTE 2018 - World Conference on Timber Engineering</td>
</tr>
<tr>
<td>Solarte, A., Hidalgo, J.P., Torero, J.L.</td>
<td>2018</td>
<td>Flammability studies for the design of fire-safe bamboo structures</td>
<td>WCTE 2018 - World Conference on Timber Engineering</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Risely, A., Waite, D.W., Ujvari, B., Hoye, B.J., Klaassen, M.</td>
<td>2018</td>
<td>Active migration is associated with specific and consistent changes to gut microbiota in Calidris shorebirds</td>
<td>Journal of Animal Ecology</td>
</tr>
<tr>
<td>Stanisic, D.I., McCarthy, J.S., Good, M.F.</td>
<td>2018</td>
<td>Controlled human malaria infection: Applications, advances, and challenges</td>
<td>Infection and Immunity</td>
</tr>
<tr>
<td>Hayes, M.H.B., Swift, R.S.</td>
<td>2018</td>
<td>An appreciation of the contribution of Frank Stevenson to the advancement of studies of soil organic matter and humic substances</td>
<td>Journal of Soils and Sediments</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Bajwa, A.A., Chauhan, B.S., Adkins, S.W.</td>
<td>2018</td>
<td>Germination Ecology of Two Australian Biotypes of Ragweed Parthenium (Parthenium hysterophorus) Relates to Their Invasiveness</td>
<td>Weed Science</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Lindenmayer, D.B., Crane, M., Evans, M.C., Maron, M., Gibbons, P., Bekessy, S., Blanchard, W.</td>
<td>2017</td>
<td>The anatomy of a failed offset</td>
<td>Biological Conservation</td>
</tr>
<tr>
<td>Hardefeldt, L.Y., Holloway, S., Trott, D.J., Shipstone, M., Barrs, V.R., Malik, R., Burrows, M., Armstrong, S., Browning, G.F., Stevenson, M.</td>
<td>2017</td>
<td>Antimicrobial Prescribing in Dogs and Cats in Australia: Results of the Australasian Infectious Disease Advisory Panel Survey</td>
<td>Journal of Veterinary Internal Medicine</td>
</tr>
<tr>
<td>Sow, L.C., Peh, Y.R., Pekerti, B.N., Fu, C., Bansal, N., Yang, H.</td>
<td>2017</td>
<td>Nanostructural analysis and textural modification of tilapia fish gelatin affected by gellan and calcium chloride addition</td>
<td>LWT - Food Science and Technology</td>
</tr>
<tr>
<td>Yang, F., Zhang, M., Bhandari, B.</td>
<td>2017</td>
<td>Recent development in 3D food printing</td>
<td>Critical Reviews in Food Science and Nutrition</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Dietzgen, R.G., Kondo, H., Goodin, M.M., Kurath, G., Vasilakis, N.</td>
<td>2017</td>
<td>The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins</td>
<td>Virus Research</td>
</tr>
<tr>
<td>Comeau, S., Tambutté, E., Carpenter, R.C., Edmunds, P.J., Evensen, N.R., Allemand, D., Ferrier-Pagès, C., Tambutté, S., Venn, A.A.</td>
<td>2017</td>
<td>Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH</td>
<td>Proceedings of the Royal Society B: Biological Sciences</td>
</tr>
<tr>
<td>Cameron, N.L., Carnegie, A.J., Wardlaw, T., Lawson, S., Venn, T.</td>
<td>2018</td>
<td>Economic appraisal of Sirex Wood Wasp (Sirex noctilio) control in Australian pine plantations</td>
<td>Australian Forestry</td>
</tr>
<tr>
<td>Lawson, S.A., Carnegie, A.J., Cameron, N., Wardlaw, T., Venn, T.J.</td>
<td>2018</td>
<td>Risk of exotic pests to the Australian forest industry</td>
<td>Australian Forestry</td>
</tr>
<tr>
<td>Sultan, S., Huma, N., Butt, M.S., Aleem, M., Abbas, M.</td>
<td>2018</td>
<td>Therapeutic potential of dairy bioactive peptides: A contemporary perspective</td>
<td>Critical Reviews in Food Science and Nutrition</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Hulse, L.S., Hickey, D., Mitchell, J.M., Beagley, K.W., Ellis, W., Johnston, S.D.</td>
<td>2018</td>
<td>Development and application of two multiplex real-time PCR assays for detection and speciation of bacterial pathogens in the koala</td>
<td>Journal of Veterinary Diagnostic Investigation</td>
</tr>
<tr>
<td>Turni, C., Singh, R., Blackall, P.J.</td>
<td>2018</td>
<td>Genotypic diversity of Pasteurella multocida isolates from pigs and poultry in Australia</td>
<td>Australian Veterinary Journal</td>
</tr>
<tr>
<td>Herne, M.C., Tait, A.M., Weisbecker, V., Hall, M., Nair, J.P., Cleeland, M., Salisbury, S.W.</td>
<td>2018</td>
<td>A new small-bodied ornithopod (Dinosauria, Ornithischia) from a deep, high-energy Early Cretaceous river of the Australian-Antarctic rift system</td>
<td>PeerJ</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Carrera Pacheco, S.E., Hankamer, B., Oey, M.</td>
<td>2018</td>
<td>Optimising light conditions increases recombinant protein production in Chlamydomonas reinhardtii chloroplasts</td>
<td>Algal Research</td>
</tr>
<tr>
<td>Sardana, V., Mahajan, G., Jabran, K., Chauhan, B.S.</td>
<td>2017</td>
<td>Role of competition in managing weeds: An introduction to the special issue</td>
<td>Crop Protection</td>
</tr>
<tr>
<td>Thierfelder, C., Chivenge, P., Mupangwa, W., Rosenstock, T.S., Lamanna, C., Eyre, J.X.</td>
<td>2017</td>
<td>How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa</td>
<td>Food Security</td>
</tr>
<tr>
<td>Bokhorst, S., Kardol, P., Bellingham, P.J., Kooyman, R.M., Richardson, S.J., Schmidt, S., Wardle, D.A.</td>
<td>2017</td>
<td>Responses of communities of soil organisms and plants to soil aging at two contrasting long-term chronosequences</td>
<td>Soil Biology and Biochemistry</td>
</tr>
<tr>
<td>Primack, R.B., Maron, M., Campos-Arceiz, A.</td>
<td>2017</td>
<td>Who are our reviewers and how do they review? The profile and work of Biological Conservation reviewers</td>
<td>Biological Conservation</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Dwyer, J.M., Laughlin, D.C.</td>
<td>2017</td>
<td>Selection on trait combinations along environmental gradients</td>
<td>Journal of Vegetation Science</td>
</tr>
<tr>
<td>Kazan, K., Gardiner, D.M.</td>
<td>2018</td>
<td>Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects</td>
<td>Molecular Plant Pathology</td>
</tr>
<tr>
<td>Almughlliq, F.B., Koh, Y.Q., Peiris, H.N., Vaswani, K., McDougall, S., Graham, E.M., Burke, C.R., Arachchige, B.J., Reed, S., Mitchell, M.D.</td>
<td>2018</td>
<td>Proteomic content of circulating exosomes in dairy cows with or without uterine infection</td>
<td>Theriogenology</td>
</tr>
<tr>
<td>Tulloch, V.J.D., Plagányi, É.E., Matear, R., Brown, C.J., Richardson, A.J.</td>
<td>2018</td>
<td>Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales</td>
<td>Fish and Fisheries</td>
</tr>
<tr>
<td>Pang, Z., Deeth, H., Yang, H., Prakash, S., Bansal, N.</td>
<td>2017</td>
<td>Evaluation of tilapia skin gelatin as a mammalian gelatin replacer in acid milk gels and low-fat stirred yogurt</td>
<td>Journal of Dairy Science</td>
</tr>
<tr>
<td>Doneley, B., Monks, D., Johnson, R., Carmel, B.</td>
<td>2017</td>
<td>Preface</td>
<td>Reptile Medicine and Surgery in Clinical Practice</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>YEAR</td>
<td>TITLE</td>
<td>PUBLICATION</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Krueck, N.C., Ahmadia, G.N., Green, A., Jones, G.P., Possingham, H.P., Riginos, C., Treml, E.A., Mumby, P.J.</td>
<td>2017</td>
<td>Incorporating larval dispersal into MPA design for both conservation and fisheries</td>
<td>Ecological Applications</td>
</tr>
<tr>
<td>Charlton Hume, H.K., Lua, L.H.L.</td>
<td>2017</td>
<td>Platform technologies for modern vaccine manufacturing</td>
<td>Vaccine</td>
</tr>
<tr>
<td>Haynes, R.J.</td>
<td>2017</td>
<td>The nature of biogenic Si and its potential role in Si supply in agricultural soils</td>
<td>Agriculture, Ecosystems and Environment</td>
</tr>
<tr>
<td>Negret, P.J., Allan, J., Braczkowski, A., Maron, M., Watson, J.E.M.</td>
<td>2017</td>
<td>Need for conservation planning in postconflict Colombia</td>
<td>Conservation Biology</td>
</tr>
</tbody>
</table>
Approved funding 2017–2019

<table>
<thead>
<tr>
<th>Entity</th>
<th>Count of RM</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queensland Alliance for Agriculture and Food Innovation</td>
<td>41</td>
<td>$26,513,186</td>
<td>$32,267,527</td>
<td>$27,676,923</td>
</tr>
<tr>
<td>Science</td>
<td>21</td>
<td>$5,778,776</td>
<td>$6,743,432</td>
<td>$7,063,536</td>
</tr>
<tr>
<td>Engineering, Architecture and Information Technology</td>
<td>4</td>
<td>$220,364</td>
<td>$937,129</td>
<td>$1,598,457</td>
</tr>
<tr>
<td>Australian Institute for Bioengineering and Nanotechnology</td>
<td>1</td>
<td>$198,000</td>
<td></td>
<td>$683,000</td>
</tr>
<tr>
<td>Institute for Molecular Bioscience</td>
<td>1</td>
<td>$448,561</td>
<td>$461,273</td>
<td>$503,315</td>
</tr>
<tr>
<td>Totals</td>
<td>68</td>
<td>$33,158,886</td>
<td>$40,409,361</td>
<td>$37,525,230</td>
</tr>
</tbody>
</table>

(The difference in total projects is the result of querying by ‘funding year’ rather than by ‘active in year’)

Parameters:
- (Include Research Grants Only)
- AND (Research Active In Year In List { 2017; 2018; 2019 })
- AND (Total Amount Approved Greater than or Equal to 1000000)
- AND (Success Indicator In List Yes)
- AND (ClassificationType In List FOR-08)
- AND (Classification Code In List {070503; 070602; 079901; 070403; 070899; 070701; 070603; 070105; 071200; 070709; 079999; 070100; 070507; 070305; 070302; 070799; 070703; 070711; 070699; 070303; 070400; 070900; 071304; 070901; 070308; 070207; 070299; 070709; 071001; 070600; 070102; 070704; 070706; 071999; 070707; 070300; 070604; 071299; 070712; 070710; 070800; 070507; 070200; 070100; 070105; 070205; 070508; 071399; 071400; 070505; 070402; 070301; 071300; 071403; 070401; 071104; 070203; 070101; 070499; 070404; 070702; 070601; 070700; 070599; 070204; 070708; 070304; 071004; 070503; 079900; 070999; 070405; 070000; 071102; 071099; 070509; 070108; 070206; 070705; 070106; 070399; 070605; 070801; 070903; 071402; 070500; 070502; 070202; 070103; 070504; 070910; 070306; 070201; 070104; 071401; 071101; 070999})